Epithelial-to-mesenchymal transition involves triacylglycerol accumulation in DU145 prostate cancer cells.

نویسندگان

  • Núria Dalmau
  • Joaquim Jaumot
  • Romà Tauler
  • Carmen Bedia
چکیده

Epithelial to mesenchymal transition (EMT) is a biological process that plays a crucial role in cancer metastasis. Although studies regarding the EMT mechanisms are usual in terms of gene expression and protein functions, little is known about the involvement of lipids in EMT. In this work, an untargeted lipidomic analysis was performed to reveal which lipids are involved in the EMT process. DU145 prostate cancer cells were treated with TNFα, a well-known EMT inducer. After 6 hours of treatment, a decrease of cell membrane E-cadherin as well as a reduction in its gene expression were observed. Also, the mesenchymal markers Vimentin and Snail were up-regulated, suggesting that EMT started below 6 hours of treatment. Lipid extracts of untreated and TNFα-treated cells at short times were analyzed using ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-MS). Multivariate data analysis methods were applied to decipher which lipids presented significant changes after EMT induction. Among the results obtained, a significant increase of twelve unsaturated triacylglycerides (TAGs) was observed. This increase of TAGs was also observed for cells treated with TGFβ (another EMT inducer), suggesting that this feature is a common mechanism in the EMT process. In conclusion, this work reported for the first time a TAG accumulation through EMT induction. These TAG lipids could play a key role in providing cells with the energy, cell membrane components and signaling lipids necessary to guarantee the enhanced cell migration and proliferation of metastatic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NDRG2 Regulates the Expression of Genes Involved in Epithelial Mesenchymal Transition of Prostate Cancer Cells

Background: Metastasis is the main cause of prostate cancer (PCa) death. The inhibitory effect of N-myc downstream-regulated gene 2 (NDRG2) on the invasiveness properties of PCa cells has been demonstrated previously. However, its underlying mechanisms have not yet been investigated. The present study aimed to investigate the effects of NDRG2 overexpression on the expression of genes involved i...

متن کامل

Epithelial to mesenchymal transition concept in Cancer: Review article

Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...

متن کامل

MicroRNA-124 regulates TGF-α-induced epithelial-mesenchymal transition in human prostate cancer cells.

Transforming growth factor-α (TGF-α) is upregulated in advanced stages of prostate cancer and strongly correlated with metastasis. However, the effect of TGF-α on epithelial-mesenchymal transition (EMT) in prostate cancer and the underlying mechanisms remain unclear. Recently, microRNAs have emerged as new regulators of EMT. This study found that treatment of DU145 cells with TGF-α suppressed t...

متن کامل

Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1

Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...

متن کامل

PAQR3 suppresses the proliferation, migration and tumorigenicity of human prostate cancer cells

As a newly discovered tumor suppressor, the potential function of PAQR3 in human prostate cancer has not been demonstrated. In this study, we report that PAQR3 is able to inhibit the growth and migration of human prostate cancer cells both in vitro and in vivo. Overexpression of PAQR3 inhibits the proliferation of PC3 and DU145 cells by both MTT and colony formation assays. Consistently, knockd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular bioSystems

دوره 11 12  شماره 

صفحات  -

تاریخ انتشار 2015